From 1 - 10 / 116
  • Categories  

    This data set contains survey data from a framed field experiment that was conducted with German crop farmers between February and April 2022. Major components of the data set: a set of psychographic/attitudinal items, results from an economic business simulation game, sociodemographic and farm structural variables (n=334 after data cleaning).

  • This data set is generated by the bio-economic farm-level model FarmDyn (https://farmdyn.github.io/documentation/). X_raw.parquet.gzip contains the input data (77 variables), and Y_raw.parquet.gzip contains the corresponding output data (248 output variables). A farm in FarmDyn maximizes its profit based on the what input values are given (e.g. crop prices, farm size, etc.). The output variables are either a farm's decisions of farming activites or the outcomes of its decisions. The data can be read in python by pd.read_parquet.

  • The corn Dataset (CN20) was captured using BonnBot-I. This is a challenging dataset for crop monitoring approaches as it is a grass crop.

  • Categories  

    Data to replicate findings of Schulz, D., & Börner, J. (2022). Innovation context and technology traits explain heterogeneity across studies of agricultural technology adoption: A meta‐analysis. Journal of Agricultural Economics, 1477-9552.12521.

  • SB20 is a sugar beet dataset that was captured at a field on campus Klein Altendorf of the University of Bonn. The data was captured by mounting an Intel RealSense D435i sensor with a nadir view of the ground on a Sagarobot. It contains RGB-Dimages of sugarbeet and eight different categories of weeds covering a range of growth stages, natural world illumination conditions, and challenging occlusions. The dataset provides multi-class annotations.

  • A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain. Please find more information at: https://www.phenobench.org/

  • Categories    

    This dataset contains the multitemporal RGB-Image field patches of the "PhenoRob Core Project 5 Mixed Cropping" experiment located at Campus Klein-Altendorf from 2020. 320 Field Patches, including both bean-wheat mixtures but also reference monocultures, were overflown by drone at 11 different time points (RGB) during the growing season. The cropped orthomosaics were rotated for ease of handling and processed to a uniform ground resolution of 3 mm. File endings 'A' and 'B' stand for two different used cameras (also different drones), resulting in slight spectral differences in the images. However, all RGB images are in TIFF format and of type UINT8.

  • Categories  

    The dataset RGB-MiniplotBarley contains 22164 RGB images of 11 time points 21. jun - 7. jul 2022 of two genotypes of spring barley grown under single-nutrient deficiencies of N, P, K, S, B and one multi-nutrient deficient treatment from miniplot fertilizer trial at Campus Klein-Altendorf of University of Bonn. The images are annotated with plot number, genotype and fertilizer management and have been taken for a Deep Learning approach for nutrient deficiency recognition.

  • This data set contains online survey data from an experiment investigating German public attitudes towards agricultural robots. Major components are the data set containing 2,269 complete questionnaires (after data cleaning), the according Stata do-file to analyze the data and the output files from the preceding construct validity tests in SPSS.

  • Reflectance orthomosaics of PhenoRob Central Experiment derived from 2021 multispectral image data.