From 1 - 10 / 118
  • SB20 is a sugar beet dataset that was captured at a field on campus Klein Altendorf of the University of Bonn. The data was captured by mounting an Intel RealSense D435i sensor with a nadir view of the ground on a Sagarobot. It contains RGB-Dimages of sugarbeet and eight different categories of weeds covering a range of growth stages, natural world illumination conditions, and challenging occlusions. The dataset provides multi-class annotations.

  • Categories  

    This dataset contains semantic segmentation train-validation-test data splits of (1) the ISPRS Potsdam orthomosaic (https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx), (2) the RIT-18 landcover orthomosaic (https://github.com/rmkemker/RIT-18), and (3) the industrial environment of the photorealistic Flightmare quadrotor simulator (https://github.com/uzh-rpg/flightmare). All splits are generated by simulating UAV missions at fixed altitudes. We use these datasets in our "An Informative Path Planning Framework for Active Learning in UAV-based Semantic Mapping" paper. Further, it contains (4) model checkpoints of our proposed Bayesian ERFNet framework (https://github.com/dmar-bonn/bayesian_erfnet) pre-trained on Cityscapes, (5) the ISPRS Potsdam and RIT-18 RGB and semantically labelled orthomosaics, and (6) the Flightmare render binary for the industrial environment.

  • Categories    

    This dataset contains the multitemporal RGB-Image field patches of the "PhenoRob Core Project 5 Mixed Cropping" experiment located at Campus Klein-Altendorf from 2020. 320 Field Patches, including both bean-wheat mixtures but also reference monocultures, were overflown by drone at 11 different time points (RGB) during the growing season. The cropped orthomosaics were rotated for ease of handling and processed to a uniform ground resolution of 3 mm. File endings 'A' and 'B' stand for two different used cameras (also different drones), resulting in slight spectral differences in the images. However, all RGB images are in TIFF format and of type UINT8.

  • Data represent an intercropping field experiment carried out at CKA in the year 2021. Shoot and root data collection was conducted with one faba bean cultivar and two spring wheat cultivars sown at three sowing densities. FTIR spectroscopy was used to define the root masses of the two species.

  • This dataset contains point clouds of sugar beet plants in field conditions. The data was recorded at Bundessortenamt and was manually labeled for leaf instance segmentation. If you want to use the dataset please contact me.

  • The effect of a mucilage analogue from chia seeds without intrinsic respiratory activity on oxygen diffusion was measured at different water contents during wetting-drying cycles in a diffusion chamber experiment. Artificial soils of various particle size distributions were mixed with various amounts of the mucilage analogue. Additionally, environmental scanning electron microscopy (ESEM) was used to visualize mucilage bridges in the dry soil samples.

  • This data set is generated by the bio-economic farm-level model FarmDyn (https://farmdyn.github.io/documentation/). X_raw.parquet.gzip contains the input data (77 variables), and Y_raw.parquet.gzip contains the corresponding output data (248 output variables). A farm in FarmDyn maximizes its profit based on the what input values are given (e.g. crop prices, farm size, etc.). The output variables are either a farm's decisions of farming activites or the outcomes of its decisions. The data can be read in python by pd.read_parquet.

  • Reflectance orthomosaics of PhenoRob Central Experiment derived from 2021 multispectral image data.